Migration guide: 0.1.x → 1.x
Welcome to VoltAgent 1.x! This release brings the architectural improvements you've been asking for - native ai-sdk integration, truly modular components, and production-ready observability. Your agents are about to get a serious upgrade.
This guide is built for real-world migrations. Copy-paste the commands, follow the checklists, ship your update. No fluff, just the changes you need to know.
Need help? Hit a snag during migration? We've got you covered:
- Open an issue on GitHub - we're tracking migration experiences closely
- Join our Discord for real-time help from the community and core team
Here's what we'll cover:
- What changed and why (high-level rationale)
- Quick migration steps (copy-paste friendly)
- Detailed changes (API-by-API, with examples)
Overview: What changed and why
VoltAgent 1.x is a complete architectural refinement. We stripped away unnecessary abstractions, embraced native ai-sdk integration, and made everything pluggable:
- Native ai-sdk integration: The custom LLM provider layer and
@voltagent/vercel-aiare removed. Apps pass ai-sdk models directly (works with any ai-sdk provider). - Modular server: The built-in HTTP server is removed from core. Use pluggable providers (recommended:
@voltagent/server-hono). - Memory V2: A clean adapter-based architecture for storage/embeddings/vector search and structured working memory.
- Observability (OpenTelemetry): Legacy telemetry exporter is removed. Observability now uses OpenTelemetry with optional span/log processors and storage.
- Developer ergonomics: Clear peer dependency on
ai, improved logger support in SSR/Edge (viaglobalThis), and convenience exports.
Benefits:
- Smaller surface area in core, better portability (Node/Edge/Workers).
- First-class ai-sdk support and predictable results/streams.
- Composable memory: scale from in-memory to LibSQL/PostgreSQL/Supabase, plus semantic search.
- Standardized observability (OTel) with optional web socket streaming/logging.
Step 1. Update Packages (@1)
Uninstall legacy provider/UI packages and install the new modular server + memory packages. Also add the base ai library and a provider.
Uninstall (legacy):
npm uninstall @voltagent/vercel-ai @voltagent/vercel-ui
# yarn remove @voltagent/vercel-ai @voltagent/vercel-ui
# pnpm remove @voltagent/vercel-ai @voltagent/vercel-ui
Upgrade/install (required):
npm install @voltagent/core@latest @voltagent/server-hono@latest @voltagent/libsql@latest @voltagent/logger@latest ai
# yarn add @voltagent/core@latest @voltagent/server-hono@latest @voltagent/libsql@latest @voltagent/logger@latest ai@latest
# pnpm add @voltagent/core@latest @voltagent/server-hono@latest @voltagent/libsql@latest @voltagent/logger@latest ai@latest
ai: Base Vercel AI SDK library used by VoltAgent 1.x (peer of@voltagent/core)@ai-sdk/openai: Example provider; choose any compatible provider (@ai-sdk/anthropic,@ai-sdk/google, etc.)@voltagent/server-hono: New pluggable HTTP server provider (replaces built-in server)@voltagent/libsql: LibSQL/Turso memory adapter (replaces built-in LibSQL in core)
Optional adapters:
@voltagent/postgres: PostgreSQL storage adapter@voltagent/supabase: Supabase storage adapter
Note: @voltagent/core@1.x declares ai@^5 as a peer dependency. Your application must install ai (and a provider like @ai-sdk/openai) to use LLM features. If ai is missing, you will get a module resolution error at runtime when calling generation methods.
Node runtime requirement:
- The repo targets Node >= 20. Please ensure your deployment matches.
Step 2. Update Code
Update your code as follows (highlighted lines are new in 1.x). Note: logger usage isn't new; keep your existing logger setup or use the example below.
// REMOVE (0.1.x):
// import { VercelAIProvider } from "@voltagent/vercel-ai";
import { VoltAgent, Agent, Memory } from "@voltagent/core";
import { LibSQLMemoryAdapter } from "@voltagent/libsql";
import { honoServer } from "@voltagent/server-hono";
import { createPinoLogger } from "@voltagent/logger";
import { openai } from "@ai-sdk/openai";
const logger = createPinoLogger({ name: "my-app", level: "info" });
const memory = new Memory({
storage: new LibSQLMemoryAdapter({ url: "file:./.voltagent/memory.db" }),
});
const agent = new Agent({
name: "my-app",
instructions: "Helpful assistant",
// REMOVE (0.1.x): llm: new VercelAIProvider(),
model: openai("gpt-4o-mini"),
memory,
});
new VoltAgent({
agents: { agent },
server: honoServer(),
logger,
});
Remove in your existing code (0.1.x):
import { VercelAIProvider } from "@voltagent/vercel-ai";llm: new VercelAIProvider(),- Built-in server options on
VoltAgent(e.g.,port,enableSwaggerUI,autoStart)
Add to your app (1.x):
import { Memory } from "@voltagent/core";import { LibSQLMemoryAdapter } from "@voltagent/libsql";import { honoServer } from "@voltagent/server-hono";- Configure
memory: new Memory({ storage: new LibSQLMemoryAdapter({ url }) }) - Pass
server: honoServer()tonew VoltAgent({...})
Summary of changes:
- Delete:
VercelAIProviderimport andllm: new VercelAIProvider() - Delete: Built-in server options (
port,enableSwaggerUI,autoStart, custom endpoints on core) - Add:
Memory+LibSQLMemoryAdapterfor persistent LibSQL/Turso-backed memory - Add:
honoServer()as the server provider - Keep:
model: openai("...")(or any ai-sdk provider)
Custom routes and auth (server):
new VoltAgent({
agents: { agent },
server: honoServer({
port: 3141, // default
enableSwaggerUI: true, // optional
configureApp: (app) => {
app.get("/api/health", (c) => c.json({ status: "ok" }));
},
// JWT auth (optional)
// auth: jwtAuth({ secret: process.env.JWT_SECRET!, publicRoutes: ["/health", "/metrics"] }),
}),
});
Detailed Changes
Observability (OpenTelemetry)
What changed:
- Legacy
telemetry/*and the telemetry exporter were removed from core. - Observability now uses OpenTelemetry and can be enabled for production with only environment variables. No code changes are required.
New APIs (from @voltagent/core):
VoltAgentObservability(created automatically unless you pass your own)- Optional processors:
LocalStorageSpanProcessor,WebSocketSpanProcessor,WebSocketLogProcessor - In-memory adapter and OTel helpers (
Span,SpanKind,SpanStatusCode, etc.)
Minimal usage (recommended):
- Add keys to your
.env:
# .env
VOLTAGENT_PUBLIC_KEY=pk_...
VOLTAGENT_SECRET_KEY=sk_...
- Run your app normally. Remote export auto-enables when valid keys are present. Local, real-time debugging via the VoltOps Console stays available either way.
Notes:
- If you previously used the deprecated
telemetryExporteror wired observability viaVoltOpsClient, remove that code. The.envkeys are sufficient. - When keys are missing/invalid, VoltAgent continues with local debugging only (no remote export).
Advanced (optional):
- Provide a custom
VoltAgentObservabilityto tune sampling/batching or override defaults. This is not required for typical setups.
Remove llm provider and @voltagent/vercel-ai
VoltAgent no longer uses a custom provider wrapper. The @voltagent/vercel-ai package has been removed, and the llm prop on Agent is no longer supported. VoltAgent now integrates directly with the Vercel AI SDK (ai) and is fully compatible with all ai-sdk providers.
What changed
- Removed:
@voltagent/vercel-aipackage andVercelAIProviderusage - Removed:
llmprop onAgent - Kept:
modelprop onAgent(now pass an ai-sdkLanguageModeldirectly) - Call settings: pass ai-sdk call settings (e.g.,
temperature,maxOutputTokens) in method options as before
Before (0.1.x)
import { Agent } from "@voltagent/core";
import { VercelAIProvider } from "@voltagent/vercel-ai";
import { openai } from "@ai-sdk/openai";
const agent = new Agent({
name: "my-app",
instructions: "Helpful assistant",
llm: new VercelAIProvider(),
model: openai("gpt-4o-mini"),
});
After (1.x)
import { Agent } from "@voltagent/core";
import { openai } from "@ai-sdk/openai";
const agent = new Agent({
name: "my-app",
instructions: "Helpful assistant",
// VoltAgent uses ai-sdk directly - just provide a model
model: openai("gpt-4o-mini"),
});
You can swap openai(...) for any ai-sdk provider, e.g. anthropic("claude-3-5-sonnet"), google("gemini-1.5-pro"), etc.
Package changes
- Uninstall legacy provider:
- npm:
npm uninstall @voltagent/vercel-ai - yarn:
yarn remove @voltagent/vercel-ai - pnpm:
pnpm remove @voltagent/vercel-ai
- npm:
- Install the ai base library and a provider:
- npm:
npm install ai @ai-sdk/openai - yarn:
yarn add ai @ai-sdk/openai - pnpm:
pnpm add ai @ai-sdk/openai
- npm:
Note:
@voltagent/core@1.xdeclaresai@^5as a peer dependency. Your application must installai(and a provider like@ai-sdk/openai) to use LLM features. Ifaiis missing, you will get a module resolution error at runtime when calling generation methods.
Code changes checklist
- Remove
import { VercelAIProvider } from "@voltagent/vercel-ai"from all files - Remove
llm: new VercelAIProvider()fromAgentconfiguration - Keep
model: ...and import the appropriate ai-sdk provider - Move
provider: { ... }call settings to top-level options (e.g.,temperature,maxOutputTokens,topP,stopSequences) - Put provider-specific knobs under
providerOptionsif needed - Remove deprecated
memoryOptionsfrom Agent constructor; configure limits on yourMemoryinstance (e.g.,storageLimit) or adapter
Example call settings (unchanged style):
const res = await agent.generateText("Hello", {
temperature: 0.3,
maxOutputTokens: 256,
providerOptions: {
someProviderSpecificOption: {
foo: "bar",
},
},
});
Common errors after upgrade
- Type error: "Object literal may only specify known properties, and 'llm' does not exist..." → Remove the
llmprop - Module not found:
@voltagent/vercel-ai→ Uninstall the package and remove imports
Environment variables
Your existing provider keys still apply (e.g., OPENAI_API_KEY, ANTHROPIC_API_KEY, etc.). Configure them as required by ai-sdk providers.
Change: Default memory is now InMemory; new Memory class
VoltAgent 1.x introduces a new Memory class that unifies conversation history, optional vector search, and working-memory features. By default, if you do not configure memory, the agent uses in-memory storage.
What changed
- Default memory: In-memory storage by default (no persistence)
- New API:
memory: new Memory({ storage: <Adapter> }) - Legacy
LibSQLStorageusage is replaced withLibSQLMemoryAdapteras a storage adapter - Optional adapters:
InMemoryStorageAdapter(core),PostgreSQLMemoryAdapter(@voltagent/postgres),SupabaseMemoryAdapter(@voltagent/supabase),LibSQLMemoryAdapter(@voltagent/libsql) - New capabilities: Embedding-powered vector search and working-memory support (optional)
Before (0.1.x)
import { Agent } from "@voltagent/core";
import { VercelAIProvider } from "@voltagent/vercel-ai";
import { LibSQLStorage } from "@voltagent/libsql";
import { openai } from "@ai-sdk/openai";
const agent = new Agent({
name: "my-agent",
instructions: "A helpful assistant that answers questions without using tools",
llm: new VercelAIProvider(),
model: openai("gpt-4o-mini"),
// Persistent memory
memory: new LibSQLStorage({
url: "file:./.voltagent/memory.db",
}),
});
After (1.x)
import { Agent, Memory } from "@voltagent/core";
import { LibSQLMemoryAdapter } from "@voltagent/libsql";
import { openai } from "@ai-sdk/openai";
const agent = new Agent({
name: "my-agent",
instructions: "A helpful assistant that answers questions without using tools",
model: openai("gpt-4o-mini"),
// Optional: persistent memory (remove to use default in-memory)
memory: new Memory({
storage: new LibSQLMemoryAdapter({
url: "file:./.voltagent/memory.db",
}),
}),
});
Optional: Vector search and working memory
To enable semantic search and working-memory features, add an embedding adapter and a vector adapter. For example, using ai-sdk embeddings and the in-memory vector store:
import { Memory, AiSdkEmbeddingAdapter, InMemoryVectorAdapter } from "@voltagent/core";
import { openai } from "@ai-sdk/openai"; // or any ai-sdk embedding model
const memory = new Memory({
storage: new LibSQLMemoryAdapter({ url: "file:./.voltagent/memory.db" }),
embedding: new AiSdkEmbeddingAdapter(openai.embedding("text-embedding-3-small")),
vector: new InMemoryVectorAdapter(),
// optional working-memory config
workingMemory: {
schema: {
/* zod-like schema or config */
},
},
});
Pick the storage adapter that best fits your deployment: in-memory (development), LibSQL/Turso (file or serverless SQLite), PostgreSQL, or Supabase.
Supabase users:
- If you use
@voltagent/supabase, run the database setup SQL in the Supabase SQL editor. See: https://voltagent.dev/docs/agents/memory/supabase/#database-setup
Change: ai-sdk v5 result passthrough + context
VoltAgent methods now return ai-sdk v5 results directly. We only add a context property to carry the OperationContext map alongside the result. This applies to:
generateTextstreamTextgenerateObjectstreamObject
Before (0.1.x)
- Responses could differ per provider wrapper.
fullStreamavailability and event types were provider-dependent.
After (1.x)
- Result objects match ai-sdk v5. Use ai-sdk docs for fields/methods.
context: Map<string | symbol, unknown>is added by VoltAgent.fullStreamis the ai-sdk stream; event shapes depend on your chosen model/provider.
streamObject rename
- The partial stream from
streamObjectis now exposed aspartialObjectStream(ai-sdk v5). - Replace any
response.objectStreamusages withresponse.partialObjectStream.
Change: Subagent fullStream forwarding config
The addSubAgentPrefix option on supervisorConfig.fullStreamEventForwarding has been removed.
Before (0.1.x)
supervisorConfig: {
fullStreamEventForwarding: {
types: ["tool-call", "tool-result", "text-delta"],
addSubAgentPrefix: true,
},
}
After (1.x)
supervisorConfig: {
fullStreamEventForwarding: {
types: ["tool-call", "tool-result", "text-delta"],
},
}
If you want prefixed labels, use the stream metadata from ai-sdk and add it yourself:
for await (const evt of response.fullStream!) {
if (evt.subAgentName && evt.type === "tool-call") {
console.log(`[${evt.subAgentName}] Using: ${evt.toolName}`);
}
}
Example (streamText):
const res = await agent.streamText("hi");
// ai-sdk v5 fullStream
if (res.fullStream) {
for await (const part of res.fullStream) {
if (part.type === "text-delta") process.stdout.write(part.textDelta);
else if (part.type === "tool-call") console.log("tool:", part.toolName);
else if (part.type === "tool-result") console.log("done:", part.toolName);
else if (part.type === "finish") console.log("usage:", part.usage);
}
}
// VoltAgent extra
console.log("context keys:", [...res.context.keys()]);
Example (generateText):
const out = await agent.generateText("hello");
console.log(out.text); // ai-sdk property
console.log(out.usage); // ai-sdk property
console.log(out.context); // VoltAgent Map
stopWhen override (advanced)
- You can pass a custom ai-sdk
stopWhenpredicate in method options to control when to stop step execution. - This overrides VoltAgent's default
stepCountIs(maxSteps)guard. - Be cautious: permissive predicates can lead to long-running or looping generations; overly strict ones may stop before tools complete.
Built-in server removed; use @voltagent/server-hono
VoltAgent 1.x decouples the HTTP server from @voltagent/core. The built-in server is removed in favor of pluggable server providers. The recommended provider is @voltagent/server-hono (powered by Hono). Default port remains 3141.
What changed
- Removed from core:
port,enableSwaggerUI,autoStart, custom endpoint registration - New:
serveroption accepts a server provider (e.g.,honoServer()) - Custom routes: use
configureAppcallback on the server provider - New: Optional authentication support (JWT) in
@voltagent/server-hono
Install
- npm:
npm install @voltagent/server-hono - yarn:
yarn add @voltagent/server-hono - pnpm:
pnpm add @voltagent/server-hono
Before (0.1.x)
import { VoltAgent } from "@voltagent/core";
new VoltAgent({
agents: { agent },
port: 3141,
enableSwaggerUI: true,
// server auto-started
});
After (1.x)
import { VoltAgent } from "@voltagent/core";
import { honoServer } from "@voltagent/server-hono";
new VoltAgent({
agents: { agent },
server: honoServer({
port: 3141, // default
enableSwaggerUI: true, // optional
}),
});
Custom routes
new VoltAgent({
agents: { agent },
server: honoServer({
configureApp: (app) => {
app.get("/api/health", (c) => c.json({ status: "ok" }));
},
}),
});
Authentication (optional)
@voltagent/server-hono provides JWT auth. Example:
import { honoServer, jwtAuth } from "@voltagent/server-hono";
new VoltAgent({
agents: { agent },
server: honoServer({
auth: jwtAuth({
secret: process.env.JWT_SECRET!,
publicRoutes: ["/health", "/metrics"],
}),
}),
});
Within agents, you can read the authenticated user from the OperationContext (context.get("user")) inside hooks.
abortController option renamed to abortSignal
Agent methods now accept abortSignal (an AbortSignal) instead of abortController.
Before (0.1.x):
const ac = new AbortController();
const res = await agent.generateText("...", { abortController: ac });
After (1.x):
const ac = new AbortController();
const res = await agent.generateText("...", { abortSignal: ac.signal });
Notes:
- Tools still access an internal
operationContext.abortControllerand its signal. - You only need to pass
abortSignalto agent calls; propagation is handled internally.
Message helpers now use UIMessage (breaking)
What changed:
- Message-level helpers now accept and return
UIMessage(ai-sdk UI message type) instead ofBaseMessage:addTimestampToMessage(message: UIMessage, ...) => UIMessageprependToMessage(message: UIMessage, ...) => UIMessageappendToMessage(message: UIMessage, ...) => UIMessagehasContent(message: UIMessage) => booleanmapMessageContent(message: UIMessage, transformer) => UIMessage
- Content-level helpers are unchanged and still operate on
MessageContent(string | parts[]).
Why:
- The Agent pipeline and hooks operate on ai-sdk
UIMessage[]. Aligning helpers eliminates type mismatches and extra conversions in hooks (e.g.,onPrepareMessages).
Before (0.1.x):
import { addTimestampToMessage, mapMessageContent } from "@voltagent/core/utils";
import type { BaseMessage } from "@voltagent/core";
const msg: BaseMessage = { role: "user", content: "hello" };
const stamped = addTimestampToMessage(msg, "10:30"); // returns BaseMessage
After (1.x):
import { addTimestampToMessage, mapMessageContent } from "@voltagent/core/utils";
import type { UIMessage } from "ai";
const msg: UIMessage = {
id: "m1",
role: "user",
parts: [{ type: "text", text: "hello" }],
metadata: {},
} as UIMessage;
const stamped = addTimestampToMessage(msg, "10:30"); // returns UIMessage
Notes:
- If you were calling helpers with
BaseMessage, update those call sites to constructUIMessageobjects (id, role, parts, metadata). AgentonPrepareMessagesalready providesUIMessage[]. - No changes needed for
transformTextContent,extractText, etc. — they still operate onMessageContent.
Hook arg rename: onHandoff source → sourceAgent (breaking)
What changed:
onHandoffhook argument object renamed the source agent field fromsourcetosourceAgentfor clarity and consistency with internal APIs.
Before (0.1.x):
onHandoff: ({ agent, source }) => {
console.log(`${source.name} → ${agent.name}`);
};
After (1.x):
onHandoff: ({ agent, sourceAgent }) => {
console.log(`${sourceAgent.name} → ${agent.name}`);
};
Action:
- Update all
onHandoffusages in your code and docs to usesourceAgent.
Server Core (typed routes, schemas, handlers)
The core HTTP surface moved into @voltagent/server-core and is consumed by @voltagent/server-hono:
- Typed route definitions and schemas for agents/workflows/logs/observability
- WebSocket utilities (log/observability streaming)
- Auth helpers and server utilities
If you previously relied on core’s internal server exports (custom endpoints, registry), migrate to @voltagent/server-core types and helpers, then run via @voltagent/server-hono.
Convenience exports & logger
- Convenience from
@voltagent/core:zodSchemaToJsonUI,stepCountIs,hasToolCall,convertUsage. - Logger helpers:
LoggerProxy,getGlobalLogger,getGlobalLogBuffer. Logger is SSR/Edge-friendly viaglobalThisin Next.js.
Runtime & TypeScript
- Node >= 20 is recommended/required for 1.x deployments.
- TypeScript 5.x recommended (repo uses 5.9). Typical
tsconfigbasics:moduleResolutionmatching your toolchain (NodeNext/Bundler),skipLibCheck: true, and DOM libs only if needed.